Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124.667
Filtrar
1.
Skin Res Technol ; 30(4): e13624, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38558219

RESUMO

Chronic urticaria (CU) is characterized by persistent skin hives, redness, and itching, enhanced by immune dysregulation and inflammation. Our main objective is identifying key genes and molecular mechanisms of chronic urticaria based on bioinformatics. We used the Gene Expression Omnibus (GEO) database and retrieved two GEO datasets, GSE57178 and GSE72540. The raw data were extracted, pre-processed, and analyzed using the GEO2R tool to identify the differentially expressed genes (DEGs). The samples were divided into two groups: healthy samples and CU samples. We defined cut-off values of log2 fold change ≥1 and p < .05. Analyses were performed in the Kyoto Encyclopaedia of Genes and Genomes (KEGG), the Database for Annotation, Visualization and Integrated Discovery (DAVID), Metascape, Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and CIBERSOFT databases. We obtained 1613 differentially expressed genes. There were 114 overlapping genes in both datasets, out of which 102 genes were up-regulated while 12 were down-regulated. The biological processes included activation of myeloid leukocytes, response to inflammations, and response to organic substances. Moreover, the KEGG pathways of CU were enriched in the Nuclear Factor-Kappa B (NF-kB) signaling pathway, Tumor Necrosis Factor (TNF) signaling pathway, and Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway. We identified 27 hub genes that were implicated in the pathogenesis of CU, such as interleukin-6 (IL-6), Prostaglandin-endoperoxide synthase 2 (PTGS2), and intercellular adhesion molecule-1 (ICAM1). The complex interplay between immune responses, inflammatory pathways, cytokine networks, and specific genes enhances CU. Understanding these mechanisms paves the way for potential interventions to mitigate symptoms and improve the quality of life of CU patients.


Assuntos
Urticária Crônica , Perfilação da Expressão Gênica , Humanos , Perfilação da Expressão Gênica/métodos , Qualidade de Vida , Inflamação , Biologia Computacional/métodos
2.
Saudi Pharm J ; 32(5): 102041, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38558886

RESUMO

The rise of antibiotic resistance in bacteria is becoming a global concern, particularly due to the dwindling supply of new antibiotics. This situation mandates the discovery of new antimicrobial candidates. Plant-derived natural compounds have historically played a crucial role in the development of antibiotics, serving as a rich source of substances possessing antimicrobial properties. Numerous studies have supported the reputation of 6-gingerol, a prominent compound found in the ginger family, for its antibacterial properties. In this study, the antibacterial activities of 6-gingerol were evaluated against Gram-negative bacteria, Acinetobacter baumannii and Klebsiella pneumoniae, with a particular focus on the clinically significant Gram-negative Pseudomonas aeruginosa and Gram-positive bacteria Staphylococcus aureus. Furthermore, the anti-virulence activities were assessed in vitro, in vivo, and in silico. The current findings showed that 6-gingerol's antibacterial activity is due to its significant effect on the disruption of the bacterial cell membrane and efflux pumps, as it significantly decreased the efflux and disrupted the cell membrane of S. aureus and P. aeruginosa. Furthermore, 6-gingerol significantly decreased the biofilm formation and production of virulence factors in S. aureus and P. aeruginosa in concentrations below MICs. The anti-virulence properties of 6-gingerol could be attributed to its capacity to disrupt bacterial virulence-regulating systems; quorum sensing (QS). 6-Gingerol was found to interact with QS receptors and downregulate the genes responsible for QS. In addition, molecular docking, and molecular dynamics (MD) simulation results indicated that 6-gingerol showed a comparable binding affinity to the co-crystalized ligands of different P. aeruginosa QS targets as well as stable interactions during 100 ns MD simulations. These findings suggest that 6-gingerol holds promise as an anti-virulence agent that can be combined with antibiotics for the treatment of severe infections.

3.
iScience ; 27(4): 109489, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38558933

RESUMO

The Bacopa monnieri plant contains phytochemicals that have been used extensively in traditional medicine to treat various diseases. More recently it has been shown to accelerate wound healing, though its mechanism of action is largely unknown. Here we investigated the cellular pathways activated by a methanol extract of Bacopa monnieri in human dermal fibroblasts, which play many critical roles in the wound healing program. Gene expression analysis revealed that the Bacopa monnieri extract can modulate multiple processes involved in the wound healing program such as migration, proliferation, and angiogenesis. We discovered that the extract can increase migration of fibroblasts via modulating the size and number of focal adhesions. Bacopa monnieri-mediated changes in focal adhesions are dependent on α5ß1 integrin activation and subsequent phosphorylation of focal adhesion kinase (FAK). Altogether our results suggest that Bacopa monnieri extract could enhance the wound healing rate via modulating fibroblast migration into the wound bed.

4.
iScience ; 27(4): 109464, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38558940

RESUMO

Non-viral gene delivery systems have received sustained attention as a promising alternative to viral vectors for disease treatment and prevention in recent years. Numerous methods have been developed to enhance gene uptake and delivery in the cytoplasm; however, due to technical difficulties and delivery efficiency, these systems still face challenges in a range of biological applications, especially in vivo. To alleviate this challenge, we devised a novel system for gene delivery based on a recombinant protein eTAT-ZF9-NLS, which consisted of a multifunctional chimeric peptide and a zinc-finger protein with sequence-specific DNA-binding activity. High transfection efficiency was observed in several mammalian cells after intracellular delivery of plasmid containing ZF9-binding sites mediated by eTAT-ZF9-NLS. Our new approach provides a novel transfection strategy and the transfection efficiency was confirmed both in vitro and in vivo, making it a preferential transfection reagent for possible gene therapy.

5.
iScience ; 27(2): 108899, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559585

RESUMO

Preeclampsia (PE) is a pregnancy-specific hypertensive disorder that severely impairs maternal and fetal health. However, its pathogenesis remains elusive. NOP2/Sun5 (NSUN5) is an RNA methyltransferase. This study discovered a significant correlation between rs77133388 of NSUN5 and PE in a cohort of 868 severe PE patients and 982 healthy controls. To further explore this association, the researchers generated single-base mutant mice (NSUN5 R295C) at rs77133388. The pregnant NSUN5 R295C mice exhibited PE symptoms. Additionally, compared to the controls, the decidual area of the placenta was significantly reduced in NSUN5 R295C mice, and their decidualization was impaired with a significantly decrease in polyploid cell numbers after artificially induced decidualization. The study also found a decrease in phosphorylated JAK2, STAT3, and IL-11Rα, Cyclin D3 expression in NSUN5 R295C mice. Overall, these findings suggest that NSUN5 mutation potentially alters decidualization through the IL-11Rα/JAK2/STAT3/Cyclin D3 pathway, ultimately impairing placental development and contributing to PE occurrence.

6.
Ther Adv Med Oncol ; 16: 17588359241230756, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559612

RESUMO

Due to the fact biliary tract cancer (BTC) is often diagnosed at an advanced stage, thus, not eligible for resection, and due to the aggressive tumor biology, it is considered as one of the cancer types with the worst prognosis. Advances in diagnosis, surgical techniques, and molecular characterization have led to an improvement of the prognosis of BTC patients, recently. Although neoadjuvant therapy is expected to improve surgical outcomes by reducing tumor size, its routine is not well established. The application of neoadjuvant therapy in locally advanced disease may be indicated, the routine use of systemic therapy prior to surgery for cholangiocarcinoma patients with an upfront resectable disease is less well established, but discussed and performed in selected cases. In advanced disease, only combination chemotherapy regimens have been demonstrated to achieve disease control in untreated patients. Molecular profiling of the tumor has demonstrated that many BTC might bear actionable targets, which might be addressed by biological treatments, thus improving the prognosis of the patients. Furthermore, the addition of the immunotherapy to standard chemotherapy might improve the prognosis in a subset of patients. This review seeks to give a comprehensive overview about the role of neoadjuvant as well as palliative systemic treatment approaches and an outlook about novel systemic treatment concept in BTC.

7.
Heliyon ; 10(7): e28060, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560194

RESUMO

In this research, we unveil the medical potential of pearls by identifying a novel bioactive peptide within them for the first time. The peptide, termed KKCHFWPFPW, emerges as a pioneering angiotensin I-converting enzyme (ACE) inhibitor, originating from the pearl matrix of Pinctada fucata. Employing quadrupole time-of-flight mass spectrometry, this peptide was meticulously selected and pinpointed. With a molecular weight of 1417.5 Da and a theoretical isoelectric point of 9.31, its inhibitory potency was demonstrated through a half-maximal inhibitory concentration (IC50) of 4.17 µM, established via high-performance liquid chromatography. The inhibition of ACE by this peptide was found to be competitive, as revealed by Lineweaver-Burk plot analysis, where an increase in peptide concentration correlated with an enhanced rate of ACE inhibition. To delve into the interaction between KKCHFWPFPW and ACE, molecular docking simulations were conducted using the Maestro 2022-1 Glide software, shedding light on the inhibitory mechanism. This investigation suggests that peptides derived from the P. martensii pearl matrix hold promise as a novel source for antihypertensive agents.

8.
Heliyon ; 10(7): e28350, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560213

RESUMO

Respiratory tract infections due to a variety of viruses continue to threaten the human population worldwide, particularly in developing countries. Among the responsible viruses, Human Bocavirus (HBoV), a novel discovered virus, causes respiratory tract and gastroenteritis disorders in young children. In Saudi Arabia, data regarding virus molecular epidemiology and evolution and its implication in respiratory tract infection are scarce. In the current study, genetic diversity and circulation pattern of HBoV-1 among hospitalized children due to acute respiratory tract infection (ARTI) during two consecutive years were charted. We found that 3.44% (2014/2015) and 11.25% (2015/2016) of children hospitalized due to ARTI were infected by HBoV-1. We have shown that HBoV was detected year-round without a marked seasonal peak. HBoV-1 also was co-detected with one or multiple other respiratory viruses. The multisequence analysis showed high sequence identity (∼99%) (few point mutation sites) between strains of each genotype and high sequence variation (∼79%) between HBoV-1 and the other 3 genotypes. Phylogenetic analysis showed the clustering of the study's isolates in the HBoV-1 subclade. Our data reveal that genetically conserved HBoV-1 was circulating among admitted children during the course of the study. Further epidemiological and molecular characterization of multiple HBoV-1 strains for different years and from all regions of Saudi Arabia are required to understand and monitor the virus evolution.

9.
Heliyon ; 10(7): e27820, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560215

RESUMO

Marine macroalgae are the habitat of epiphytic bacteria and provide several conditions for a beneficial biological interaction to thrive. Although Bacillus is one of the most abundant epiphytic genera, genomic information on marine macroalgae-associated Bacillus species remains scarce. In this study, we further investigated our previously published genome of the epiphytic strain Bacillus altitudinis 19_A to find features that could be translated to potential metabolites produced by this microorganism, as well as genes that play a role in its interaction with its macroalgal host. To achieve this goal, we performed a pan-genome analysis of Bacillus sp. and a codon bias assessment, including the genome of the strain Bacillus altitudinis 19_A and 29 complete genome sequences of closely related Bacillus strains isolated from soil, marine environments, plants, extreme environments, air, and food. This genomic analysis revealed that Bacillus altitudinis 19_A possessed unique genes encoding proteins involved in horizontal gene transfer, DNA repair, transcriptional regulation, and bacteriocin biosynthesis. In this comparative analysis, codon bias was not associated with the habitat of the strains studied. Some accessory genes were identified in the Bacillus altitudinis 19_A genome that could be related to its epiphytic lifestyle, as well as gene clusters for the biosynthesis of a sporulation-killing factor and a bacteriocin, showing their potential as a source of antimicrobial peptides. Our results provide a comprehensive view of the Bacillus altitudinis 19_A genome to understand its adaptation to the marine environment and its potential as a producer of bioactive compounds.

10.
J Pharmacopuncture ; 27(1): 1-13, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38560336

RESUMO

Objectives: The Curcuma-derived diferuloylmethane compound CUR, loaded on Poly (lactide-co-glycolic) acid (PLGA) nanoparticles was utilized to combat DN-induced renal apoptosis by selectively targeting and modulating Bcl2. Methods: Upon in silico molecular docking and screening study CUR was selected as the core phytocompound for nanoparticle formulation. PLGA-nano-encapsulated-curcumin (NCUR) were synthesized following standard solvent displacement method. The NCUR were characterized for shape, size and other physico-chemical properties by Atomic Force Microscopy (AFM), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared (FTIR) Spectroscopy studies. For in vivo validation of nephro-protective effects, Mus musculus were pre-treated with CUR at a dose of 50 mg/kg b.w. and NCUR at a dose of 25 mg/kg b.w. (dose 1), 12.5 mg/kg b.w (dose 2) followed by alloxan administration (100 mg/kg b.w) and serum glucose levels, histopathology and immunofluorescence study were conducted. Results: The in silico study revealed a strong affinity of CUR towards Bcl2 (dock score -10.94 Kcal/mol). The synthesized NCUR were of even shape, devoid of cracks and holes with mean size of ~80 nm having -7.53 mV zeta potential. Dose 1 efficiently improved serum glucose levels, tissue-specific expression of Bcl2 and reduced glomerular space and glomerular sclerosis in comparison to hyperglycaemic group. Conclusion: This study essentially validates the potential of NCUR to inhibit DN by reducing blood glucose level and mitigating glomerular apoptosis by selectively promoting Bcl2 protein expression in kidney tissue.

12.
Front Mol Biosci ; 11: 1364494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560519

RESUMO

The human multidrug transporter P-glycoprotein (P-gp) is physiologically essential and of key relevance to biomedicine. Recent structural studies have shed light on the mode of inhibition of the third-generation inhibitors for human P-gp, but the molecular mechanism by which these inhibitors enter the transmembrane sites remains poorly understood. In this study, we utilized all-atom molecular dynamics (MD) simulations to characterize human P-gp dynamics under a potent inhibitor, tariquidar, bound condition, as well as the atomic-level binding pathways in an explicit membrane/water environment. Extensive unbiased simulations show that human P-gp remains relatively stable in tariquidar-free and bound states, while exhibiting a high dynamic binding mode at either the drug-binding pocket or the regulatory site. Free energy estimations by partial nudged elastic band (PNEB) simulations and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method identify two energetically favorable binding pathways originating from the cytoplasmic gate with an extended tariquidar conformation. Interestingly, free tariquidar in the lipid membrane predominantly adopts extended conformations similar to those observed at the regulatory site. These results suggest that membrane lipids may preconfigure tariquidar into an active ligand conformation for efficient binding to the regulatory site. However, due to its conformational plasticity, tariquidar ultimately moves toward the drug-binding pocket in both pathways, explaining how it acts as a substrate at low concentrations. Our molecular findings propose a membrane-assisted mechanism for the access and binding of the third-generation inhibitors to the binding sites of human P-gp, and offer deeper insights into the molecule design of more potent inhibitors against P-gp-mediated drug resistance.

13.
Open Forum Infect Dis ; 11(4): ofae113, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38560600

RESUMO

Background: Diagnosis of cutaneous leishmaniasis (CL) usually relies on invasive samples, but it is unclear whether more patient-friendly tools are good alternatives for diverse lesions when used with polymerase chain reaction (PCR). Methods: Patients with suspected CL were enrolled consecutively in a prospective diagnostic accuracy study. We compared dental broach, tape disc, and microbiopsy samples with PCR as index tests, using PCR with skin slit samples as reference test. Subsequently, we constructed a composite reference test including microscopy, the 3 index tests and skin slit PCR, and we compared these same tests with the composite reference test. We assessed diagnostic accuracy parameters with 95% confidence intervals for all comparisons. Results: Among 344 included patients, 282 (82.0%) had CL diagnosed, and 62 (18.0%) CL absence, by skin slit PCR. The sensitivity and specificity by PCR were 89.0% (95% confidence interval, 84.8%-92.1%) and 58.1% (45.7%-69.5%), respectively, for dental broach, 96.1% (93.2%-97.8%) and 27.4% (17.9%-39.6%) for tape disc, and 74.8% (66.3%-81.7%) and 72.7% (51.8%-86.8%) for microbiopsy. Several reference test-negative patients were consistently positive with the index tests. Using the composite reference test, dental broach, and skin slit had similar diagnostic performance. Discussion: Dental broach seems a less invasive but similarly accurate alternative to skin slit for diagnosing CL when using PCR. Tape discs lack specificity and seem unsuitable for CL diagnosis without cutoff. Reference tests for CL are problematic, since using a single reference test is likely to miss true cases, while composite reference tests are often biased and impractical as they require multiple tests.

14.
Front Endocrinol (Lausanne) ; 15: 1322731, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562417

RESUMO

Purpose: Telomerase reverse transcriptase (TERT) has been reported in papillary thyroid carcinoma (PTC). This study aimed to investigate the correlation of TERT promoter mutations with clinical and ultrasound (US) features in PTC and to develop a model to predict TERT promoter mutations. Methods: Preoperative US images, postoperative pathological features, and TERT promoter mutation information were evaluated in 365 PTC patients confirmed by surgery. Univariate and multivariate factor analyses were performed to identify risk factors for TERT promoter mutations. A predictive model was established to assess the clinical predictive value. Results: Of the 365 patients with PTC (498 nodules), the number of those with TERT promoter mutations was 67 cases (75 nodules), and the number of those without mutations was 298 cases (423 nodules). The median age was 40 years in the wild-type group and 60 years in the mutant group. Male patients made up 35.82% of the mutant group and 22.82% of the wild-type group. Multivariate analysis revealed that the independent risk factors associated with the occurrence of TERT promoter mutation in PTC were as follows: older age (odds ratio (OR) = 1.07; p = 0.002), maximum diameter of ≥ 10 mm (OR = 3.94; p < 0.0001), unilateral (OR = 4.15; p < 0.0001), multifocal (OR = 7.69; p < 0.0001), adjacent to the thyroid capsule (OR = 1.94; p = 0.044), and accompanied by other benign nodules (OR = 1.94, p = 0.039). A predictive model was established, and the area under the curve (AUC) of the receiver operating characteristic was 0.839. TERT promoter mutations were associated with high-risk US and clinical features compared with the wild-type group. Conclusion: TERT promoter mutations were associated with older ages. They were also found to be multifocal, with a maximum diameter of ≥ 10 mm, unilateral, adjacent to the thyroid capsule, and accompanied by other benign nodules. The predictive model was of high diagnostic value.


Assuntos
Carcinoma Papilar , Telomerase , Neoplasias da Glândula Tireoide , Humanos , Masculino , Adulto , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Carcinoma Papilar/diagnóstico por imagem , Carcinoma Papilar/genética , Carcinoma Papilar/patologia , Regiões Promotoras Genéticas/genética , Mutação , Telomerase/genética
15.
PeerJ ; 12: e17094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563003

RESUMO

Liver disease is a common and serious threat to human health. The progression of liver diseases is influenced by many physiologic processes, including oxidative stress, inflammation, bile acid metabolism, and autophagy. Various factors lead to the dysfunction of these processes and basing on the different pathogeny, pathology, clinical manifestation, and pathogenesis, liver diseases are grouped into different categories. Specifically, Sirtuin1 (SIRT1), a member of the sirtuin protein family, has been extensively studied in the context of liver injury in recent years and are confirmed the significant role in liver disease. SIRT1 has been found to play a critical role in regulating key processes in liver injury. Further, SIRT1 seems to cause divers outcomes in different types of liver diseases. Recent studies have showed some therapeutic strategies involving modulating SIRT1, which may bring a novel therapeutic target. To elucidate the mechanisms underlying the role of sirtuin1 in liver injury and its potentiality as a therapeutic target, this review outlines the key signaling pathways associated with sirtuin1 and liver injury, and discusses recent advances in therapeutic strategies targeting sirtuin1 in liver diseases.


Assuntos
Hepatopatias , Sirtuína 1 , Humanos , Sirtuína 1/genética , Hepatopatias/terapia , Inflamação , Transdução de Sinais
16.
Plant J ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565299

RESUMO

Monoterpene synthases (MTSs) catalyze the first committed step in the biosynthesis of monoterpenoids, a class of specialized metabolites with particularly high chemical diversity in angiosperms. In addition to accomplishing a rate enhancement, these enzymes manage the formation and turnover of highly reactive carbocation intermediates formed from a prenyl diphosphate substrate. At each step along the reaction path, a cationic intermediate can be subject to cyclization, migration of a proton, hydride, or alkyl group, or quenching to terminate the sequence. However, enzymatic control of ligand folding, stabilization of specific intermediates, and defined quenching chemistry can maintain the specificity for forming a signature product. This review article will discuss our current understanding of how angiosperm MTSs control the reaction environment. Such knowledge allows inferences about the origin and regulation of chemical diversity, which is pertinent for appreciating the role of monoterpenoids in plant ecology but also for aiding commercial efforts that harness the accumulation of these specialized metabolites for the food, cosmetic, and pharmaceutical industries.

17.
J Integr Med ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38565435

RESUMO

OBJECTIVE: Research has shown that celastrol can effectively treat a variety of diseases, yet when passing a certain dosage threshold, celastrol becomes toxic, causing complications such as liver and kidney damage and erythrocytopenia, among others. With this dichotomy in mind, it is extremely important to find ways to preserve celastrol's efficacy while reducing or preventing its toxicity. METHODS: In this study, insulin-resistant HepG2 (IR-HepG2) cells were prepared using palmitic acid and used for in vitro experiments. IR-HepG2 cells were treated with celastrol alone or in combination with N-acetylcysteine (NAC) or ferrostatin-1 (Fer-1) for 12, 24 or 48 h, at a range of doses. Cell counting kit-8 assay, Western blotting, quantitative reverse transcription-polymerase chain reaction, glucose consumption assessment, and flow cytometry were performed to measure celastrol's cytotoxicity and whether the cell death was linked to ferroptosis. RESULTS: Celastrol treatment increased lipid oxidation and decreased expression of anti-ferroptosis proteins in IR-HepG2 cells. Celastrol downregulated glutathione peroxidase 4 (GPX4) mRNA. Molecular docking models predicted that solute carrier family 7 member 11 (SLC7A11) and GPX4 were covalently bound by celastrol. Importantly, we found for the first time that the application of ferroptosis inhibitors (especially NAC) was able to reduce celastrol's toxicity while preserving its ability to improve insulin sensitivity in IR-HepG2 cells. CONCLUSION: One potential mechanism of celastrol's cytotoxicity is the induction of ferroptosis, which can be alleviated by treatment with ferroptosis inhibitors. These findings provide a new strategy to block celastrol's toxicity while preserving its therapeutic effects. Please cite this article as: Liu JJ, Zhang X, Qi MM, Chi YB, Cai BL, Peng B, Zhang DH. Ferroptosis inhibitors reduce celastrol toxicity and preserve its insulin sensitizing effects in insulin resistant HepG2 cells. J Integr Med. 2024; Epub ahead of print.

18.
Hum Cell ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565739

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a common type of skin cancer that can result in significant morbidity, although it is usually well-managed and rarely metastasizes. However, the lack of commercially available cSCC cell lines hinders our understanding of this disease. This study aims to establish and characterize a new metastatic cSCC cell line derived from a Brazilian patient. A tumor biopsy was taken from a metastatic cSCC patient, immortalized, and named HCB-541 after several passages. The cytokeratin expression profile, karyotypic alterations, mutational analysis, mRNA and protein differential expression, tumorigenic capacity in xenograft models, and drug sensitivity were analyzed. The HCB-541 cell line showed a doubling time between 20 and 30 h and high tumorigenic capacity in the xenograft mouse model. The HCB-541 cell line showed hypodiploid and hypotetraploidy populations. We found pathogenic mutations in TP53 p.(Arg248Leu), HRAS (Gln61His) and TERT promoter (C228T) and high-level microsatellite instability (MSI-H) in both tumor and cell line. We observed 37 cancer-related genes differentially expressed when compared with HACAT control cells. The HCB-541 cells exhibited high phosphorylated levels of EGFR, AXL, Tie, FGFR, and ROR2, and high sensitivity to cisplatin, carboplatin, and EGFR inhibitors. Our study successfully established HCB-541, a new cSCC cell line that could be useful as a valuable biological model for understanding the biology and therapy of metastatic skin cancer.

19.
EMBO J ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565952

RESUMO

We introduce MolPhase, an advanced algorithm for predicting protein phase separation (PS) behavior that improves accuracy and reliability by utilizing diverse physicochemical features and extensive experimental datasets. MolPhase applies a user-friendly interface to compare distinct biophysical features side-by-side along protein sequences. By additional comparison with structural predictions, MolPhase enables efficient predictions of new phase-separating proteins and guides hypothesis generation and experimental design. Key contributing factors underlying MolPhase include electrostatic pi-interactions, disorder, and prion-like domains. As an example, MolPhase finds that phytobacterial type III effectors (T3Es) are highly prone to homotypic PS, which was experimentally validated in vitro biochemically and in vivo in plants, mimicking their injection and accumulation in the host during microbial infection. The physicochemical characteristics of T3Es dictate their patterns of association for multivalent interactions, influencing the material properties of phase-separating droplets based on the surrounding microenvironment in vivo or in vitro. Robust integration of MolPhase's effective prediction and experimental validation exhibit the potential to evaluate and explore how biomolecule PS functions in biological systems.

20.
Mol Ecol Resour ; : e13958, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567648

RESUMO

The origin of flight and laryngeal echolocation in bats is likely to have been accompanied by evolutionary changes in other aspects of their sensory biology. Of all sensory modalities in bats, olfaction is perhaps the least well understood. Olfactory receptors (ORs) function in recognizing odour molecules, with crucial roles in evaluating food, as well as in processing social information. Here we compare OR repertoire sizes across taxa and apply a new pipeline that integrates comparative genome data with protein structure modelling and then we employ molecular docking techniques with small molecules to analyse OR functionality based on binding energies. Our results suggest a sharp contraction in odorant recognition of the functional OR repertoire during the origin of bats, consistent with a reduced dependence on olfaction. We also compared bat lineages with contrasting different ecological characteristics and found evidence of differences in OR gene expansion and contraction, and in the composition of ORs with different tuning breadths. The strongest binding energies of ORs in non-echolocating fruit-eating bats were seen to correspond to ester odorants, although we did not detect a quantitative advantage of functional OR repertoires in these bats compared with echolocating insectivorous species. Overall, our findings based on molecular modelling and computational docking suggest that bats have undergone olfactory evolution linked to dietary adaptation. Our results from extant and ancestral bats help to lay the groundwork for targeted experimental functional tests in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...